• The scope of computation defines its true limits

    From olcott@polcott333@gmail.com to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 13:20:16 2025
    From Newsgroup: comp.ai.philosophy

    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.
    --
    Copyright 2025 Olcott<br><br>

    My 28 year goal has been to make <br>
    "true on the basis of meaning expressed in language"<br>
    reliably computable.<br><br>

    This required establishing a new foundation<br>

    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Damon@Richard@Damon-Family.org to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 14:28:20 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".

    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From olcott@polcott333@gmail.com to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 14:11:47 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/2025 1:28 PM, Richard Damon wrote:
    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".


    Instead of spouting off dogma any idiot can do
    that, you define what you think that the term
    "scope of computation" actually means.

    This is what Google AI said.
    The "scope of computation" refers to the range
    and limits of what can be solved or processed
    using algorithms and computational methods.

    That is what I mean. What do you mean?
    --
    Copyright 2025 Olcott<br><br>

    My 28 year goal has been to make <br>
    "true on the basis of meaning expressed in language"<br>
    reliably computable.<br><br>

    This required establishing a new foundation<br>
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Damon@Richard@Damon-Family.org to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 15:33:26 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/25 3:11 PM, olcott wrote:
    On 12/24/2025 1:28 PM, Richard Damon wrote:
    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".


    Instead of spouting off dogma any idiot can do
    that, you define what you think that the term
    "scope of computation" actually means.

    You are using the wrong term.

    It is the Scope of the Theory of Computation, which is the list of
    problems that we are allowed to ask a Turing Machine/Computation to try
    to compute.

    That list of problems is ANY mapping of a source domain (expressed to
    the machine via some representation) to an answer domain (again
    expressed via some representaiton)


    This is what Google AI said.
    The "scope of computation" refers to the range
    and limits of what can be solved or processed
    using algorithms and computational methods.

    That is what I mean. What do you mean?


    Which isn't the Scope of the Theory of Compuation, but a descption of
    what is actually computable, the determination of this is the goal of
    the Theory of Computability.

    Again, you don't understand what you are talking about, so you get the
    wrong definition.

    Part of your problem is that you use words that are so close to being
    correct, that by giving you the benefit of the doubt, and then you show
    that you got just luck to use words that sounded correct, but you really didn't know what you were talking about.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From olcott@polcott333@gmail.com to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 14:56:33 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/2025 2:33 PM, Richard Damon wrote:
    On 12/24/25 3:11 PM, olcott wrote:
    On 12/24/2025 1:28 PM, Richard Damon wrote:
    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".


    Instead of spouting off dogma any idiot can do
    that, you define what you think that the term
    "scope of computation" actually means.

    You are using the wrong term.

    It is the Scope of the Theory of Computation, which is the list of
    problems that we are allowed to ask a Turing Machine/Computation to try
    to compute.

    That list of problems is ANY mapping of a source domain (expressed to
    the machine via some representation) to an answer domain (again
    expressed via some representaiton)


    This is what Google AI said.
    The "scope of computation" refers to the range
    and limits of what can be solved or processed
    using algorithms and computational methods.

    That is what I mean. What do you mean?


    Which isn't the Scope of the Theory of Compuation, but a descption of
    what is actually computable,

    The scope of computation is the boundary of
    what is and what is not computable.

    Turing machine deciders: Transform finite string
    inputs by finite string transformation rules into
    {Accept, Reject} values.

    *Translated into this formal specification*

    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*

    A Turing-machine decider is a Turing machine D that
    computes a total function D : Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the
    input alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗,
    D halts and outputs either Accept or Reject.

    the determination of this is the goal of
    the Theory of Computability.

    Again, you don't understand what you are talking about, so you get the
    wrong definition.

    Part of your problem is that you use words that are so close to being correct, that by giving you the benefit of the doubt, and then you show
    that you got just luck to use words that sounded correct, but you really didn't know what you were talking about.
    --
    Copyright 2025 Olcott<br><br>

    My 28 year goal has been to make <br>
    "true on the basis of meaning expressed in language"<br>
    reliably computable.<br><br>

    This required establishing a new foundation<br>
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Damon@Richard@Damon-Family.org to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 16:38:55 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/25 3:56 PM, olcott wrote:
    On 12/24/2025 2:33 PM, Richard Damon wrote:
    On 12/24/25 3:11 PM, olcott wrote:
    On 12/24/2025 1:28 PM, Richard Damon wrote:
    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".


    Instead of spouting off dogma any idiot can do
    that, you define what you think that the term
    "scope of computation" actually means.

    You are using the wrong term.

    It is the Scope of the Theory of Computation, which is the list of
    problems that we are allowed to ask a Turing Machine/Computation to
    try to compute.

    That list of problems is ANY mapping of a source domain (expressed to
    the machine via some representation) to an answer domain (again
    expressed via some representaiton)


    This is what Google AI said.
    The "scope of computation" refers to the range
    and limits of what can be solved or processed
    using algorithms and computational methods.

    That is what I mean. What do you mean?


    Which isn't the Scope of the Theory of Compuation, but a descption of
    what is actually computable,

    The scope of computation is the boundary of
    what is and what is not computable.

    Which is NOT the boundry of what you can ask of a decider, as it is
    allowed for the Function to not be computable.

    You are confusing the boundary of ABILITY with the boundry of allowed REQUIREMENT.


    Turing machine deciders: Transform finite string
    inputs by finite string transformation rules into
    {Accept, Reject} values.

    *Translated into this formal specification*

    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*

    Of what is COMPUTABLE, not what can be asked to try to compute.


    A Turing-machine decider is a Turing machine D that
    computes a total function D :  Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the
    input alphabet. That is:

    And, to be an XXXX Decider, must produce the mapping of the XXXX function,

    Sorry, you are just proving you are too stupid to understand what you
    are talking about.

    1. Totality: For every finite string input w ∈ Σ∗,
    D halts and outputs either Accept or Reject.

    the determination of this is the goal of the Theory of Computability.

    Again, you don't understand what you are talking about, so you get the
    wrong definition.

    Part of your problem is that you use words that are so close to being
    correct, that by giving you the benefit of the doubt, and then you
    show that you got just luck to use words that sounded correct, but you
    really didn't know what you were talking about.



    Note, A "Scope" of a system needs to be pre-determiable. You need to be
    able to know if you can ask the question before you need to search for
    the answer.

    Your "scope" fails that test. You can only find out, and only maybe,
    after the fact by succeeding or proving you can't do it.

    So, all you are doing is sticking your head down into your POOP and
    ignoring the real problems, because you are just too stupid to
    understand what you are actually talking about, because you are so
    stupid you can't understand what the words actually mean, in part
    because you use the wrong words.

    By your definition, all functions we can talk about in computatation
    theory must be computable, as that is the only scope you want to allow.
    Then why do we need the seperate name for them?

    What good is a field devoted to determing what is computable, if the
    only things you allow it to talk about are computable, and, you can't
    tell if somethihg is actually in scope until you determine how to
    compute it.

    THis is the problem with a lot of your arguements, your system where you
    try to limit statements to that which is knowable means you can't talk
    about a statement until you know the answer to them, and that it is
    solvable.

    This makes your logic system just a toy, You can only talk about what is known, and can't learn anything new.

    Sorry, you are just proving your utter stupidity.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From olcott@polcott333@gmail.com to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 16:01:22 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/2025 3:38 PM, Richard Damon wrote:
    On 12/24/25 3:56 PM, olcott wrote:
    On 12/24/2025 2:33 PM, Richard Damon wrote:
    On 12/24/25 3:11 PM, olcott wrote:
    On 12/24/2025 1:28 PM, Richard Damon wrote:
    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".


    Instead of spouting off dogma any idiot can do
    that, you define what you think that the term
    "scope of computation" actually means.

    You are using the wrong term.

    It is the Scope of the Theory of Computation, which is the list of
    problems that we are allowed to ask a Turing Machine/Computation to
    try to compute.

    That list of problems is ANY mapping of a source domain (expressed to
    the machine via some representation) to an answer domain (again
    expressed via some representaiton)


    This is what Google AI said.
    The "scope of computation" refers to the range
    and limits of what can be solved or processed
    using algorithms and computational methods.

    That is what I mean. What do you mean?


    Which isn't the Scope of the Theory of Compuation, but a descption of
    what is actually computable,

    The scope of computation is the boundary of
    what is and what is not computable.

    Which is NOT the boundry of what you can ask of a decider, as it is
    allowed for the Function to not be computable.

    You are confusing the boundary of ABILITY with the boundry of allowed REQUIREMENT.


    You are confusing that requirement can exceed an ability.
    Some idiot could "require" the a Turing Machine to
    compute the last digit PI.


    Turing machine deciders: Transform finite string
    inputs by finite string transformation rules into
    {Accept, Reject} values.

    *Translated into this formal specification*

    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*

    Of what is COMPUTABLE, not what can be asked to try to compute.


    Asking it try try to compute anything outside the
    scope of computation is nuts.


    A Turing-machine decider is a Turing machine D that
    computes a total function D :  Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the
    input alphabet. That is:

    And, to be an XXXX Decider, must produce the mapping of the XXXX function,


    Not when no such mapping exists as transformations
    from finite string INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    According to the specification of the limits of computation.

    Sorry, you are just proving you are too stupid to understand what you
    are talking about.


    It is not me that is too stupid here.
    --
    Copyright 2025 Olcott<br><br>

    My 28 year goal has been to make <br>
    "true on the basis of meaning expressed in language"<br>
    reliably computable.<br><br>

    This required establishing a new foundation<br>
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From olcott@polcott333@gmail.com to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 16:11:20 2025
    From Newsgroup: comp.ai.philosophy

    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.

    When Decider H is required to compute a mapping
    from its input P to the halt status of UTM(P)
    and THIS MAPPING DOES NOT EXIST then it is the
    requirement itself that is incorrect.
    --
    Copyright 2025 Olcott<br><br>

    My 28 year goal has been to make <br>
    "true on the basis of meaning expressed in language"<br>
    reliably computable.<br><br>

    This required establishing a new foundation<br>
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Damon@Richard@Damon-Family.org to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 18:10:36 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/25 5:01 PM, olcott wrote:
    On 12/24/2025 3:38 PM, Richard Damon wrote:
    On 12/24/25 3:56 PM, olcott wrote:
    On 12/24/2025 2:33 PM, Richard Damon wrote:
    On 12/24/25 3:11 PM, olcott wrote:
    On 12/24/2025 1:28 PM, Richard Damon wrote:
    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".


    Instead of spouting off dogma any idiot can do
    that, you define what you think that the term
    "scope of computation" actually means.

    You are using the wrong term.

    It is the Scope of the Theory of Computation, which is the list of
    problems that we are allowed to ask a Turing Machine/Computation to
    try to compute.

    That list of problems is ANY mapping of a source domain (expressed
    to the machine via some representation) to an answer domain (again
    expressed via some representaiton)


    This is what Google AI said.
    The "scope of computation" refers to the range
    and limits of what can be solved or processed
    using algorithms and computational methods.

    That is what I mean. What do you mean?


    Which isn't the Scope of the Theory of Compuation, but a descption
    of what is actually computable,

    The scope of computation is the boundary of
    what is and what is not computable.

    Which is NOT the boundry of what you can ask of a decider, as it is
    allowed for the Function to not be computable.

    You are confusing the boundary of ABILITY with the boundry of allowed
    REQUIREMENT.


    You are confusing that requirement can exceed an ability.
    Some idiot could "require" the a Turing Machine to
    compute the last digit PI.


    Sure, and that IS one operation that a Turing Machine (in a different
    model) could do, One of his early paper talked about using Turing
    Machines to compute real numbers, by continuing to compute the next
    digit of the number, and then the one after that, and so on.

    Of course, there machines never stop to complete if the number is
    irrational.


    Turing machine deciders: Transform finite string
    inputs by finite string transformation rules into
    {Accept, Reject} values.

    *Translated into this formal specification*

    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*

    Of what is COMPUTABLE, not what can be asked to try to compute.


    Asking it try try to compute anything outside the
    scope of computation is nuts.

    But it is in the Scope of Computation Theory and a valid request for a decider.

    You just don't understand what you are talking about.



    A Turing-machine decider is a Turing machine D that
    computes a total function D :  Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the
    input alphabet. That is:

    And, to be an XXXX Decider, must produce the mapping of the XXXX
    function,


    Not when no such mapping exists as transformations
    from finite string INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    According to the specification of the limits of computation.

    Right, and that input *IS* the string that specifies fully the algorithm
    of the machine, and thus it if valid to ask about semantic properties
    that derive from the running of siad machine.

    If that wasn't a valid request, then you system just doesn't support
    semantic properties.


    Sorry, you are just proving you are too stupid to understand what you
    are talking about.


    It is not me that is too stupid here.


    Sure it is. You are just to stupid to realize it.

    You can't show what your logic is based on, except your own fantasies.

    Your world is just internally inconsistant, because you are just insane.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Damon@Richard@Damon-Family.org to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 18:16:46 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/25 5:11 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    But the above define HOW the machine works, not what it can be asked to
    do, or how to determine correctness.

    Since "Correctness" for a Turing Machine is defined by if the mapping it computes matches the mapping it was supposed to be trying to compute, we
    have the criteria for what CAN be asked as a requirement, it is any
    actual mapping from input to output that is fully defined.

    Since Halting is such a mapping, as all machines will eaithr halt or
    not, it is a valid question to ask, even if it turns out to not be
    computable by any machine.

    When Decider H is required to compute a mapping
    from its input P to the halt status of UTM(P)
    and THIS MAPPING DOES NOT EXIST then it is the
    requirement itself that is incorrect.


    But the mapping DOES exist, at least if your description P is correct.

    Are you just showing you are brain dead?

    Your problem is your world can't define "correctness" because truth
    doesn't exist in it.

    Your world can't actually talk about problems, as you need to have the
    answer before you can ask the question,

    Your world is just broken.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From olcott@polcott333@gmail.com to comp.theory,sci.logic,sci.math,comp.ai.philosophy on Wed Dec 24 17:30:57 2025
    From Newsgroup: comp.ai.philosophy

    On 12/24/2025 5:10 PM, Richard Damon wrote:
    On 12/24/25 5:01 PM, olcott wrote:
    On 12/24/2025 3:38 PM, Richard Damon wrote:
    On 12/24/25 3:56 PM, olcott wrote:
    On 12/24/2025 2:33 PM, Richard Damon wrote:
    On 12/24/25 3:11 PM, olcott wrote:
    On 12/24/2025 1:28 PM, Richard Damon wrote:
    On 12/24/25 2:20 PM, olcott wrote:
    *This defines the scope of computation*
    A Turing-machine decider is a Turing machine D that
    computes a total function D: Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the input
    alphabet. That is:

    1. Totality: For every finite string input w ∈ Σ∗, D
    halts and outputs either Accept or Reject.

    *This is semantically entailed from this definition*
    Any requirement that requires more than the above
    definition can provide is a requirement that is outside
    of the scope of computation.


    FALSE, proving you don't understand the meaning of "Scope".


    Instead of spouting off dogma any idiot can do
    that, you define what you think that the term
    "scope of computation" actually means.

    You are using the wrong term.

    It is the Scope of the Theory of Computation, which is the list of
    problems that we are allowed to ask a Turing Machine/Computation to >>>>> try to compute.

    That list of problems is ANY mapping of a source domain (expressed
    to the machine via some representation) to an answer domain (again
    expressed via some representaiton)


    This is what Google AI said.
    The "scope of computation" refers to the range
    and limits of what can be solved or processed
    using algorithms and computational methods.

    That is what I mean. What do you mean?


    Which isn't the Scope of the Theory of Compuation, but a descption
    of what is actually computable,

    The scope of computation is the boundary of
    what is and what is not computable.

    Which is NOT the boundry of what you can ask of a decider, as it is
    allowed for the Function to not be computable.

    You are confusing the boundary of ABILITY with the boundry of allowed
    REQUIREMENT.


    You are confusing that requirement can exceed an ability.
    Some idiot could "require" the a Turing Machine to
    compute the last digit PI.


    Sure, and that IS one operation that a Turing Machine (in a different
    model) could do, One of his early paper talked about using Turing
    Machines to compute real numbers, by continuing to compute the next
    digit of the number, and then the one after that, and so on.

    Of course, there machines never stop to complete if the number is irrational.


    Turing machine deciders: Transform finite string
    inputs by finite string transformation rules into
    {Accept, Reject} values.

    *Translated into this formal specification*

    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*
    *DEFINE the actual limits of computation*

    Of what is COMPUTABLE, not what can be asked to try to compute.


    Asking it try try to compute anything outside the
    scope of computation is nuts.

    But it is in the Scope of Computation Theory and a valid request for a decider.

    You just don't understand what you are talking about.


    I have proven that I am correct and you
    are merely biased by the conventional view.



    A Turing-machine decider is a Turing machine D that
    computes a total function D :  Σ∗ → {Accept,Reject},
    where Σ∗ is the set of all finite strings over the
    input alphabet. That is:

    And, to be an XXXX Decider, must produce the mapping of the XXXX
    function,


    Not when no such mapping exists as transformations
    from finite string INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    INPUTS INPUTS INPUTS INPUTS
    According to the specification of the limits of computation.

    Right, and that input *IS* the string that specifies fully the algorithm
    of the machine, and thus it if valid to ask about semantic properties
    that derive from the running of siad machine.


    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS
    INPUTS INPUTS INPUTS INPUTS TO H DO NOT SPECIFY THIS

    If that wasn't a valid request, then you system just doesn't support semantic properties.


    Sorry, you are just proving you are too stupid to understand what you
    are talking about.


    It is not me that is too stupid here.


    Sure it is. You are just to stupid to realize it.

    You can't show what your logic is based on, except your own fantasies.

    Your world is just internally inconsistant, because you are just insane.
    --
    Copyright 2025 Olcott<br><br>

    My 28 year goal has been to make <br>
    "true on the basis of meaning expressed in language"<br>
    reliably computable.<br><br>

    This required establishing a new foundation<br>
    --- Synchronet 3.21a-Linux NewsLink 1.2